openhgnn.models.MeiREC 源代码

import torch
import torch.nn as nn
from torch.autograd import Variable
from . import BaseModel, register_model
import torch.nn.functional as F


[文档]@register_model('MeiREC') class MeiREC(BaseModel): r""" MeiREC from paper `Metapath-guided Heterogeneous Graph Neural Network for Intent Recommendation <https://dl.acm.org/doi/abs/10.1145/3292500.3330673>`__ in KDD_2019. `Code from author <https://github.com/googlebaba/KDD2019-MEIRec>`__. We leverage metapaths to obtain different-step neighbors of an object, and the embeddings of us ers and queries are the aggregation of their neighbors under different metapaths.And we propose to represent the queries and items with a small number of term embeddings.we need to learn the term embeddings, rather than all object embeddings. This method is able to significantly reduc e the number of parameters. Parameters ---------- user_seq_length : int Number for process dataset. ... batch_num : int Number of batch. weight_decay : float Number of weight_decay. lr : float learning rate. train_epochs : int Number of train epoch. ----------- """ @classmethod def build_model_from_args(cls, config): return cls(config) def __init__(self, config): super().__init__() self.model = Model(config) def forward(self, *args): return self.model(*args) def extra_loss(self): pass
class Model(nn.Module): def __init__(self, args): super().__init__() self.args = args # model params self.user_seq_length = 15 self.user_item_term_length = 10 self.user_query_term_length = 10 self.query_length = 10 self.query_topcate_length = 3 self.query_leafcate_length = 3 self.embed_size_word = 64 self._generate_model_layer() # drop out prob self.keep_prob = 0.8 def set_mode(self, mode="train"): self.keep_prob = 0.8 if mode == "train" else 1.0 def _generate_model_layer(self): self._word_embed = nn.Parameter( Variable( torch.Tensor(self.args.vocab, self.embed_size_word), requires_grad=True, )) # self.register_parameter('word_embed', nn.Parameter(self._word_embed)) # lstms # h,c for lstm weights, w b for mlp weights, bias ( self.user_word_lstm, self.h_1, self.c_1, self.w_l1, self.b_l1, self.loss1, ) = self._rnn_lstm(1, self.args.batch_num, 64, 64) ( self.user_item_query_lstm, self.h_2, self.c_2, self.w_l2, self.b_l2, self.loss2, ) = self._rnn_lstm(1, self.args.batch_num, 64, 64) ( self.user_query_item_lstm, self.h_3, self.c_3, self.w_l3, self.b_l3, self.loss3, ) = self._rnn_lstm(1, self.args.batch_num, 64, 64) ( self.user_query_seq_lstm, self.h_4, self.c_4, self.w_l4, self.b_l4, self.loss4, ) = self._rnn_lstm(1, self.args.batch_num, 64, 64) # cnn self.query_item_query_cnn, self.conv_w1, self.loss5 = self._cnn(64) self.query_item_query_linear = nn.Linear(12 * 2 * 1, 64) self.query_item_query_relu = nn.ReLU() self.query_user_item_cnn, self.conv_w2, self.loss6 = self._cnn(64) self.query_user_item_linear = nn.Linear(12 * 2 * 1, 64) self.query_user_item_relu = nn.ReLU() # weights & bias # wide feats, mlp layers for wide feats, 81 for static feats length self.wide_feat_w, self.loss7 = self.get_weights_variables( [64, 81], self.args.weight_decay) self.wide_feat_b = self.get_bias_variables(64) # concat query weights, 64 * 7 for concat feats len self.concat_query_w, self.loss8 = self.get_weights_variables( [64, 64 * 7], self.args.weight_decay) self.concat_query_b = self.get_bias_variables(64) # concat_query_user_wide, concat query and # user wide infos, then len: 128 self.concat_query_user_wide_w, self.loss9 = self.get_weights_variables( [64, 128], self.args.weight_decay) self.concat_query_user_wide_b = self.get_bias_variables(64) # deep_wide_feat, the last layer mlp => predict val self.deep_wide_feat_w, self.loss10 = self.get_weights_variables( [1, 64], self.args.weight_decay) self.deep_wide_feat_b = self.get_bias_variables(1) @property def regular_loss(self): return ( self.get_regular_loss(self.w_l1) + self.get_regular_loss(self.w_l2) + self.get_regular_loss(self.w_l3) + self.get_regular_loss(self.w_l4) + self.get_regular_loss(self.wide_feat_w) + self.get_regular_loss(self.concat_query_w) + self.get_regular_loss(self.concat_query_user_wide_w) + self.get_regular_loss(self.deep_wide_feat_w)) def get_regular_loss(self, params): return torch.sum(torch.pow(params, 2)) / 2 * self.args.weight_decay def get_weights_variables(self, shape, weight_decay, trainable=True): params = nn.Parameter( Variable(torch.Tensor(*shape), requires_grad=trainable)) if weight_decay == 0: regular_loss = 0.0 else: # xavier initializer, need params demension >= 2 nn.init.xavier_uniform_(params, gain=1.0) # l2 regular loss for weights regular_loss = torch.sum(torch.pow(params, 2)) / 2 * weight_decay return params, regular_loss def get_bias_variables(self, size, trainable=True): params = nn.Parameter( Variable(torch.Tensor(size, 1), requires_grad=trainable)) # constant initialize of nn.init.constant_(params, 0.0) return params def _rnn_lstm(self, layers_num, batches_num, features_num, hidden_size): # LstmCell: features * hidden_size * layers_num lstm = nn.LSTM(features_num, hidden_size, layers_num, bias=True) # weights: num_layers * batch * hidden size h_0, regular_loss_h0 = self.get_weights_variables( [layers_num, batches_num, hidden_size], self.args.weight_decay) c_0, regular_loss_c0 = self.get_weights_variables( [layers_num, batches_num, hidden_size], self.args.weight_decay) w_l, regular_loss_wl = self.get_weights_variables( [hidden_size, hidden_size], self.args.weight_decay) b_l = self.get_bias_variables(hidden_size) # hidden_layer = torch.tanh(torch.matmul(w_l, lstm_cell.T) + b_l) loss_total = regular_loss_h0 + regular_loss_c0 + regular_loss_wl # output: 64 * batch_num return lstm, h_0, c_0, w_l, b_l, loss_total def _cnn(self, features_num): # x: batch * channels * h * w # x_input = input.view(-1, 1, nums, features_num) conv_w, regular_loss_w = self.get_weights_variables( [12, 1, 2, features_num], self.args.weight_decay) conv_b, _ = self.get_weights_variables([12], 0) # default stride 1, padding valid conv = nn.Conv2d(1, 12, kernel_size=(2, features_num), stride=1, padding='valid') return conv, conv_w, regular_loss_w def forward(self, x): # x:[m, batch_size]; 912*512 wide_feat = x[:81, :] user_item_seq = x[81:276, :] query_feat = x[276:292, :] user_query_seq = x[292:462, :] query_item_query = x[462:562, :] user_query_item = x[562:662, :] user_item_query = x[662:812, :] query_user_item = x[812:, :] # query embedding, query terms 10 * batch query_terms, query_topcate, query_leafcate = torch.split( query_feat, [ self.query_length, self.query_topcate_length, self.query_leafcate_length, ], 0, ) # look up in word embedding's dict [280000, 64] => 10 * batch * 64 inputs_query_raw = torch.nn.functional.embedding(query_terms.to(torch.int64), self._word_embed) input_num = (torch.sum(torch.sign(query_terms)) if torch.sum(torch.sign(query_terms)) > 1 else torch.tensor(1)) # get query word to vec sum 64 * batchsize self.query_w2v_sum = torch.mean( inputs_query_raw[:int(input_num.item())], 0).T #64*512 # user word embedding raw_word_embedding_list = torch.split(user_item_seq[-13 * 5:, :], [13] * 5, 0) step_embedding_list = [] for raw_word_embed in raw_word_embedding_list: item_terms, item_topcate, item_leafcate, time_delta = torch.split( raw_word_embed, [self.user_item_term_length, 1, 1, 1], 0) step_embedding = torch.nn.functional.embedding(item_terms.to(torch.int64), self._word_embed) input_num = (torch.sum(torch.sign(item_terms)) if torch.sum(torch.sign(item_terms)) > 1 else torch.tensor(1)) # step_avg_embedding: batchsize * 64 step_avg_embedding = torch.mean( step_embedding[:int(input_num.item())], 0) # append a new axis in the first step_embedding_list.append(step_avg_embedding.unsqueeze(0)) # step_embedding vec: 5 * batchsize * 64 step_embedding_vec = torch.cat(step_embedding_list, 0) lstm_cells, lstm_hiddens = self.user_word_lstm(step_embedding_vec, (self.h_1, self.c_1)) self.user_item_term_lstm_output = torch.tanh( torch.matmul(self.w_l1, lstm_cells[-1].T) + self.b_l1) # user_item_query_embedding raw_user_item_query_embedding_list = torch.split( user_item_query[:10 * 5, :], [10] * 5, 0) step_embedding_list = [] for raw_user_item_embed in raw_user_item_query_embedding_list: item_terms = raw_user_item_embed[:5] step_embedding = torch.nn.functional.embedding(item_terms.to(torch.int64), self._word_embed) input_num = (torch.sum(torch.sign(item_terms)) if torch.sum(torch.sign(item_terms)) > 1 else torch.tensor(1)) step_avg_embedding = torch.mean( step_embedding[:int(input_num.item())], 0) step_embedding_list.append(step_avg_embedding.unsqueeze(0)) step_embedding_vec = torch.cat(step_embedding_list, 0) lstm_cells, lstm_hiddens = self.user_item_query_lstm( step_embedding_vec, (self.h_2, self.c_2)) self.user_item_query_term_lstm_output = torch.tanh( torch.matmul(self.w_l2, lstm_cells[-1].T) + self.b_l2) # user_query_item embedding raw_user_query_item_embedding_list = torch.split( user_query_item[-10 * 5:, :], [10] * 5, 0) step_embedding_list = [] for raw_user_item_embed in raw_user_query_item_embedding_list: item_terms = raw_user_item_embed[:5] step_embedding = torch.nn.functional.embedding(item_terms.to(torch.int64), self._word_embed) input_num = (torch.sum(torch.sign(item_terms)) if torch.sum(torch.sign(item_terms)) > 1 else torch.tensor(1)) step_avg_embedding = torch.mean( step_embedding[:int(input_num.item())], 0) step_embedding_list.append(step_avg_embedding.unsqueeze(0)) step_embedding_vec = torch.cat(step_embedding_list, 0) lstm_cells, lstm_hiddens = self.user_query_item_lstm( step_embedding_vec, (self.h_3, self.c_3)) self.user_query_item_term_lstm_output = torch.tanh( torch.matmul(self.w_l3, lstm_cells[-1].T) + self.b_l3) # query_item_query embed raw_query_item_query_embedding_list = torch.split( query_item_query[-10 * 5:, :], [10] * 5, 0) step_embedding_list = [] for raw_user_item_embed in raw_query_item_query_embedding_list: query_terms = raw_user_item_embed[:5] step_embedding = torch.nn.functional.embedding(query_terms.to(torch.int64), self._word_embed) input_num = (torch.sum(torch.sign(query_terms)) if torch.sum(torch.sign(query_terms)) > 1 else torch.tensor(1)) step_avg_embedding = torch.mean( # 512 * 64 step_embedding[:int(input_num.item())], 0) step_embedding_list.append(step_avg_embedding.unsqueeze(0)) step_embedding_vec = torch.cat(step_embedding_list, 0) # 5 * 512 * 64 convd = self.query_item_query_cnn( torch.transpose(step_embedding_vec, 0, 1).unsqueeze(1)) convd_active = F.relu(convd) pooled = F.max_pool2d(convd_active, (2, 1), stride=2) pooled = torch.transpose(pooled, 1, 2) pooled = torch.transpose(pooled, 2, 3) pool_flat = pooled.reshape(-1, 2 * 1 * 12) self.query_item_query_cnn_output = self.query_item_query_relu( self.query_item_query_linear(pool_flat)).T # query_user_item embedd raw_query_user_item_embedding_list = torch.split( query_user_item[-10 * 5:, :], [10] * 5, 0) step_embedding_list = [] for raw_user_item_embed in raw_query_user_item_embedding_list: item_terms = raw_user_item_embed[:5] step_embedding = torch.nn.functional.embedding(item_terms.to(torch.int64), self._word_embed) input_num = (torch.sum(torch.sign(item_terms)) if torch.sum(torch.sign(item_terms)) > 1 else torch.tensor(1)) step_avg_embedding = torch.mean( step_embedding[:int(input_num.item())], 0) step_embedding_list.append(step_avg_embedding.unsqueeze(0)) step_embedding_vec = torch.cat(step_embedding_list, 0) convd = self.query_user_item_cnn( torch.transpose(step_embedding_vec, 0, 1).unsqueeze(1)) convd_active = F.relu(convd) pooled = F.max_pool2d(convd_active, (2, 1), stride=2) pooled = torch.transpose(pooled, 1, 2) pooled = torch.transpose(pooled, 2, 3) pool_flat = pooled.reshape(-1, 2 * 1 * 12) self.query_user_item_cnn_output = self.query_user_item_relu( self.query_user_item_linear(pool_flat)).T # user_query_seq embed raw_user_query_seq_embedding_list = torch.split( user_query_seq[-17 * 5:, :], [17] * 5, 0) step_embedding_list = [] for raw_user_item_embed in raw_user_query_seq_embedding_list[::-1]: ( query_terms, query_topcate, query_leafcate, time_delta, ) = torch.split(raw_user_item_embed, [self.user_query_term_length, 3, 3, 1], 0) step_embedding = torch.nn.functional.embedding(query_terms.to(torch.int64), self._word_embed) input_num = (torch.sum(torch.sign(query_terms)) if torch.sum(torch.sign(query_terms)) > 1 else torch.tensor(1)) step_avg_embedding = torch.mean( step_embedding[:int(input_num.item())], 0) step_embedding_list.append(step_avg_embedding.unsqueeze(0)) step_embedding_vec = torch.cat(step_embedding_list, 0) lstm_cells, lstm_hiddens = self.user_query_seq_lstm( step_embedding_vec, (self.h_4, self.c_4)) self.user_query_term_lstm_output = torch.tanh( torch.matmul(self.w_l4, lstm_cells[-1].T) + self.b_l4) # wide connected, connect static params # wide feat hidden output: 64 * batch_size self.wide_hidden_layer1 = torch.tanh( # [64, 81] * [81, 1] F.dropout( torch.matmul(self.wide_feat_w, wide_feat.float()) + self.wide_feat_b, self.keep_prob )) concat_seq = [ self.user_item_term_lstm_output, self.user_query_term_lstm_output, self.query_w2v_sum, self.user_item_query_term_lstm_output, self.user_query_item_term_lstm_output, self.query_item_query_cnn_output, self.query_user_item_cnn_output, ] qu_term_concat = F.dropout(torch.cat(concat_seq, 0), self.keep_prob) # [64*7, 1] # concat user query feats: 64 * batch_size self.qu_term_hidden_layer1 = torch.tanh( F.dropout( torch.matmul(self.concat_query_w, qu_term_concat) + #聚合特征信息 [64, 64*7] * [64*7, 1] self.concat_query_b, self.keep_prob )) # concat feats and static datas: 128 * batch_size deep_wide_concat = torch.cat( # [64, 1] || [64, 1] -> [128, 1] [self.qu_term_hidden_layer1, self.wide_hidden_layer1], 0) # mlp for wide concat data : 64 * batch_size self.dw_hidden_layer0 = torch.tanh( # [64, 128] * [128 * 1] mlp F.dropout( torch.matmul(self.concat_query_user_wide_w, deep_wide_concat) + self.concat_query_user_wide_b, self.keep_prob )) self.dw_hidden_layer1 = torch.sigmoid( # [1, 64] * [64, 1] -> 1 torch.matmul(self.deep_wide_feat_w, self.dw_hidden_layer0) + self.deep_wide_feat_b) self.predict_labels = self.dw_hidden_layer1.squeeze() return self.predict_labels